18.703 Modern Algebra, Presentations and Groups of small order

نویسنده

  • James McKernan
چکیده

i Given any word w, the reduced word w associated to w is any word obtained from w by reduction, such that wi cannot be reduced any further. Given two words w1 and w2 of A, the concatenation of w1 and w2 is the word w = w1w2. The empty word is denoted e. The set of all reduced words is denoted FA. With product defined as the reduced concatenation, this set becomes a group, called the free group with generators A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

18.703 Modern Algebra, Permutation groups

Proof. (5.2) implies that the set of permutations is closed under com­ position of functions. We check the three axioms for a group. We already proved that composition of functions is associative. Let i : S −→ S be the identity function from S to S. Let f be a permutation of S. Clearly f ◦ i = i ◦ f = f . Thus i acts as an identity. Let f be a permutation of S. Then the inverse g of f is a perm...

متن کامل

18.703 Modern Algebra, Quotient Groups

Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ : G −→ G', such that H is the kernel of φ? Clearly a necessary condition is that H is normal in G. Somewhat surprisingly this trivially necessary condition is also in fact sufficient. The idea is as follows. Given G and H there is an obvious map of sets, where H is the inverse image of a point. We just put X...

متن کامل

18.703 Modern Algebra, The Isomorphism Theorems

We have already seen that given any group G and a normal subgroup H, there is a natural homomorphism φ : G −→ G/H, whose kernel is H. In fact we will see that this map is not only natural, it is in some sense the only such map.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013